That plot is from my German blog TikZ.de.
I planned to model this nice cake:
(Foto by Guido Draheim).
Like a cruller, just, ehm, more digital and mathematical.
How do we draw it?
Let’s think of a cross-section. In polar coordinates the sine function sin(x) gives a circle, sin(3x) are three leaves, we add some radius (1,25) as a middle piece. That gives us the function sin(3x) + 1.25 in polar coordinates:
We embed it in the three-dimensional space, like in the xy plane with z=0 as (x,y,z)(t) = ( cos(t)(sin(3t)+1.25), sin(t)(sin(3t) + 1.25), 0 ):
Or rotated a bit:
We can move it in the space by drawing in the xz plane and move with linear y: (x,y,z)(t) = ( cos(t)(sin(3t)+1.25), t, sin(t)(sin(3t)+1.25) ). That becomes:
But we want to rotate it. For doing this, we use a torus function , like this one:
x(t,s) = (2+cos(t))cos(s+pi/2)
y(t,s) = (2+cos(t))sin(s+pi/2)
z(t,s) = sin(t)
We combine it with our function:
x(t,s) = (6+(sin(3t)+1.25)cos(t))cos(s)
y(t,s) = (6+(sin(3t)+1.25)cos(t))sin(s)
z(t,s) = (sin(3t)+1.25)sin(t)
Here is a cut, half circle rotation:
Here is the whole torus based rotated 3d image of the original function:
And now to the twist. We can twist it by adding a multiple of t or y in the function argument and achieve the rotation with growing y:
Math done, let’s add color. Ok, and now the code:
% !TEX lualatex % Mit LuaLaTeX übersetzen, weil die Berechnungen zu aufwendig für pdfLaTeX sind \documentclass{standalone} \usepackage{pgfplots} \usetikzlibrary{backgrounds} \begin{document} \begin{tikzpicture} \begin{axis}[axis equal, hide axis, /tikz/background rectangle/.style = { left color = black, right color = black!20, shading angle = 135, }, show background rectangle ] \addplot3[ surf, shader = flat, miter limit = 1, domain = 0:360, y domain = 0:360, samples = 60,% low res for online compiler, take 100 for the image below, samples y = 40,% % low res for online compiler, take 70 for the image below, z buffer = sort, colormap/hot2, ] ( {(6+(sin(3*(x+3*y))+1.25)*cos(x))*cos(y)}, {(6+(sin(3*(x+3*y))+1.25)*cos(x))*sin(y)}, {((sin(3*(x+3*y))+1.25)*sin(x))} ); \end{axis} \end{tikzpicture} \end{document}
With more resolution, samples=100 and samples y=70:
All codes and explanation are also here:
- Deutsch: Drehtransformation mit pgfplots, in German on TeXwelt.de
- Englisch: Rotation transformation of a parametrized plot, with answer by cmhughes on TeX.SE
- Französisch: Représenter un vissage à l’aide de pgfplots, French post on TeXnique.fr