A time-frequency correspondence illustration of the Fourier transform.
This code was written by Jake on TeX.SE.
Edit and compile if you like:\documentclass[border=10pt]{standalone} \usepackage{pgfplots} \pgfplotsset{width=7cm,compat=1.6} \begin{document} \begin{tikzpicture} \begin{axis}[ set layers=standard, domain=0:10, samples y=1, view={40}{20}, hide axis, unit vector ratio*=1 2 1, xtick=\empty, ytick=\empty, ztick=\empty, clip=false ] \def\sumcurve{0} \pgfplotsinvokeforeach{0.5,1.5,...,5.5}{ \draw [on layer=background, gray!20] (axis cs:0,#1,0) -- (axis cs:10,#1,0); \addplot3 [on layer=main, blue!30, smooth, samples=101] (x,#1,{sin(#1*x*(157))/(#1*2)}); \addplot3 [on layer=axis foreground, very thick, blue,ycomb, samples=2] (10.5,#1,{1/(#1*2)}); \xdef\sumcurve{\sumcurve + sin(#1*x*(157))/(#1*2)} } \addplot3 [red, samples=200] (x,0,{\sumcurve}); \draw [on layer=axis foreground] (axis cs:0,0,0) -- (axis cs:10,0,0); \draw (axis cs:10.5,0.25,0) -- (axis cs:10.5,5.5,0); \end{axis} \end{tikzpicture} \end{document}