Inspired by Juan Carlos on X:
#mathart #parametric #surfaces https://t.co/kY3gJxHvd1 pic.twitter.com/GbZ16Yyw5U
— ∞ 𝕁uan ℂarlos (@jcponcemath) April 21, 2025
A Breather surface is beautiful, a pseudosphere famous in differential geometry and theoretical physics. A parametrization is here.
I plotted it with pgfplots and TikZ in LaTeX, and colored it like a flower, using the colormaps feature. A gradient background enhances the appearance.
\documentclass{standalone} \usepackage{pgfplots} \pgfplotsset{compat=1.8} \pgfplotsset{trig format plots=rad} \usetikzlibrary{backgrounds} \begin{document} \begin{tikzpicture} \begin{axis}[ view = {60}{-60}, hide axis, colormap = {flower}{% color(0cm) = (yellow!20); color(4cm) = (orange!50!yellow); color(8cm) = (red!40!black); color(12cm) = (red!80!black); color(16cm) = (green); color(20cm) = (green!20!black)}, /tikz/background rectangle/.style = { left color = blue!60, right color = blue!10, shading angle = 135}, show background rectangle] \addplot3[surf, z buffer = sort, point meta = u, domain = -13.2:13.2, domain y = -37.4:37.4, samples = 30, samples y = 30,% take 80 and 120 for the image below variable = \u, variable y = \v ] ( { -u + (2*0.84*cosh(0.4*u)*sinh(0.4*u))/ (0.4*((sqrt(0.84)*cosh(0.4*u))^2 + (0.4*sin(sqrt(0.84)*v))^2)) }, { (2*sqrt(0.84)*cosh(0.4*u)*(-(sqrt(0.84)*sin(v) * cos(sqrt(0.84)*v)) + cos(v)*sin(sqrt(0.84)*v)))/(0.4 * ((sqrt(0.84)*cosh(0.4*u))^2 + (0.4*sin(sqrt(0.84)*v))^2)) }, { (2*sqrt(0.84)*cosh(0.4*u)*(-(sqrt(0.84)*cos(v) * cos(sqrt(0.84)*v)) - sin(v)*sin(sqrt(0.84)*v)))/(0.4 * ((sqrt(0.84)*cosh(0.4*u))^2 + (0.4*sin(sqrt(0.84)*v))^2)) }); \end{axis} \end{tikzpicture} \end{document}