Twisted torus

Breather surface – a pseudosphere like a flower

Inspired by Juan Carlos on X:

A Breather surface is beautiful, a pseudosphere famous in differential geometry and theoretical physics. A parametrization is here.

I plotted it with pgfplots and TikZ in LaTeX, and colored it like a flower, using the colormaps feature. A gradient background enhances the appearance.

\documentclass{standalone}
\usepackage{pgfplots}
\pgfplotsset{compat=1.8}
\pgfplotsset{trig format plots=rad}
\usetikzlibrary{backgrounds}
\begin{document}
\begin{tikzpicture}
\begin{axis}[
view = {60}{-60},
hide axis,
colormap = {flower}{%
color(0cm) = (yellow!20);
color(4cm) = (orange!50!yellow);
color(8cm) = (red!40!black);
color(12cm) = (red!80!black);
color(16cm) = (green);
color(20cm) = (green!20!black)},
/tikz/background rectangle/.style = {
left color = blue!60,
right color = blue!10,
shading angle = 135},
show background rectangle]
\addplot3[surf,
z buffer = sort, point meta = u,
domain = -13.2:13.2, domain y = -37.4:37.4,
samples = 30, samples y = 30,% take 80 and 120 for the image below
variable = \u, variable y = \v ]
( { -u + (2*0.84*cosh(0.4*u)*sinh(0.4*u))/
(0.4*((sqrt(0.84)*cosh(0.4*u))^2
+ (0.4*sin(sqrt(0.84)*v))^2)) },
{ (2*sqrt(0.84)*cosh(0.4*u)*(-(sqrt(0.84)*sin(v)
* cos(sqrt(0.84)*v)) + cos(v)*sin(sqrt(0.84)*v)))/(0.4
* ((sqrt(0.84)*cosh(0.4*u))^2 + (0.4*sin(sqrt(0.84)*v))^2)) },
{ (2*sqrt(0.84)*cosh(0.4*u)*(-(sqrt(0.84)*cos(v)
* cos(sqrt(0.84)*v)) - sin(v)*sin(sqrt(0.84)*v)))/(0.4
* ((sqrt(0.84)*cosh(0.4*u))^2 + (0.4*sin(sqrt(0.84)*v))^2)) });
\end{axis}
\end{tikzpicture}
\end{document}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Flower's bloom plotted in 3d