Inspired by Juan Carlos on X:
#mathart #parametric #surfaces https://t.co/kY3gJxHvd1 pic.twitter.com/GbZ16Yyw5U
— ∞ 𝕁uan ℂarlos (@jcponcemath) April 21, 2025
A Breather surface is beautiful, a pseudosphere famous in differential geometry and theoretical physics. A parametrization is here.
I plotted it with pgfplots and TikZ in LaTeX, and colored it like a flower, using the colormaps feature. A gradient background enhances the appearance.
\documentclass{standalone}\usepackage{pgfplots}\pgfplotsset{compat=1.8}\pgfplotsset{trig format plots=rad}\usetikzlibrary{backgrounds}\begin{document}\begin{tikzpicture}\begin{axis}[view = {60}{-60},hide axis,colormap = {flower}{%color(0cm) = (yellow!20);color(4cm) = (orange!50!yellow);color(8cm) = (red!40!black);color(12cm) = (red!80!black);color(16cm) = (green);color(20cm) = (green!20!black)},/tikz/background rectangle/.style = {left color = blue!60,right color = blue!10,shading angle = 135},show background rectangle]\addplot3[surf,z buffer = sort, point meta = u,domain = -13.2:13.2, domain y = -37.4:37.4,samples = 30, samples y = 30,% take 80 and 120 for the image belowvariable = \u, variable y = \v ]( { -u + (2*0.84*cosh(0.4*u)*sinh(0.4*u))/(0.4*((sqrt(0.84)*cosh(0.4*u))^2+ (0.4*sin(sqrt(0.84)*v))^2)) },{ (2*sqrt(0.84)*cosh(0.4*u)*(-(sqrt(0.84)*sin(v)* cos(sqrt(0.84)*v)) + cos(v)*sin(sqrt(0.84)*v)))/(0.4* ((sqrt(0.84)*cosh(0.4*u))^2 + (0.4*sin(sqrt(0.84)*v))^2)) },{ (2*sqrt(0.84)*cosh(0.4*u)*(-(sqrt(0.84)*cos(v)* cos(sqrt(0.84)*v)) - sin(v)*sin(sqrt(0.84)*v)))/(0.4* ((sqrt(0.84)*cosh(0.4*u))^2 + (0.4*sin(sqrt(0.84)*v))^2)) });\end{axis}\end{tikzpicture}\end{document}